
eBook

Maintaining  
Software Quality 
with Microservices



1	 Introduction

2	 Part 1: Background with Motivation			   

2	 What are Microservices?  

3	 Motivation for Microservices 

4	 Some Complementary Trends

6	 Part 2: Challenges with Microservices		   

6	 Granularity 

6	 Network Communication 

6	 Interaction Exchange Patterns 

7	 System Latency 

7	 Partial Failures 

7	 Consistency 

8	 Organizational Changes 

8	 Testing and Debugging Microservices 

8		  Integration Testing 

9		  Debugging 

9			   Application Performance Monitoring 

10			   Logging 

10			   Continuous Code Improvement

11	 Part 3: Meeting the Quality Challenge 	  

11	 Organizational Aspects 

11		  Establish Goals 

11		  Create Cross-Functional Teams 

11		  Get the Size Right 

11	 	 Define Metrics 

12		  Handle Legacy 

12	 Technical Aspects 

12		  Use an Anti-Corruption Layer 

12		  Refactor the Monolith 

12		  Avoiding Undifferentiated Heavy Lifting 

13	 Observability 

13	 Error Monitoring for Observability

13	 Part 4: Conclusion

Table of Contents



eBook // Maintaining Software Quality with Microservices 1

As observed in the State of Microservices Maturity report published by O’Reilly 
in 2018, microservices have moved “from fad to trend,” with a majority of survey 
respondents using microservices for over half their new development.  
Other reports show similar adoption. 

This rise in the popularity of microservices didn’t happen in isolation.  
The transition to cloud infrastructure, the availability of new automation  
tools to continuously integrate and deploy software  (CI/CD), and the growth  
of DevOps culture have all contributed to the trend. As a result, the time to  
bring new features and applications to market has dramatically decreased.

So it’s not surprising to find enterprises with legacy applications moving their 
systems to a microservices architecture. There are many examples of companies 
successfully making the change, but these examples shouldn’t suggest that the 
move is easy. Microservices are complex, and maintaining quality during the 
move is especially difficult. A great deal of success depends on whether or not 
the enterprise is prepared to make the necessary changes, both organizational 
and technical, to maintain quality. 

In this eBook, we’ll take a look at the strategies for moving to a microservices-
based architecture, and how to maintain quality during that transition. We’ll start 
with a background of microservices and why an enterprise might make the move, 
then we’ll identify the challenges in making a successful transition, and then 
finally we’ll talk about best practices for achieving software quality during  
this process.

eBook // Maintaining Software Quality with Microservices 1

51%

55%

56%

57%

59%

Sh
ar

e 
of

 N
ew

 D
ev

el
op

m
en

t a
s 

M
ic

ro
se

rv
ic

es

% Of Companies

75-100%

50 - 75%

25 - 50%

10 - 25%

<10%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% Of Companies

Sh
ar

e 
of

 N
ew

 D
ev

el
op

m
en

t 
as

 M
ic

ro
se

rv
ic

es

Microservices are here to stay
Introduction

https://www.infoq.com/news/2019/02/Oreilly-microservices-maturity/
https://devops.com/survey-sees-massive-adoption-of-microservices/
https://blog.dreamfactory.com/microservices-examples/


eBook // Maintaining Software Quality with Microservices 2

Databases Databases Databases Databases

User Interfaces

MicroservicesMicroservicesMicroservicesMicroservices

User Interfaces

Microservices

Databases

Microservices

Databases

Microservices

Databases

Microservices

Databases

What are Microservices?
Microservices are a style of architecting software into small, independent 
services that are autonomous, decoupled, and yet work together to create  
a variety of larger applications. Because the services are decoupled, they can 
easily be deployed and upgraded independently of each other. Microservices 
are typically designed as individual, reusable business capabilities. 

Background and Motivation1

https://microservices.io/


eBook // Maintaining Software Quality with Microservices 3

Motivation for Microservices
To identify why microservices have become so popular, it’s easiest to 
compare them to their foil — the monolithic application. A monolithic 
application has all of its services — UI, business logic, data access logic, etc. — 
combined into a single, large, “monolithic” system.

It’s a well-known challenge to modify and deploy these large monolithic 
systems smoothly and quickly.

•	 Their codebases do not have distinct and independent interfaces 
between their components or modules.

•	 When errors occur, it can take significant time to isolate the specific 
problem. While debugging in microservices presents its own 
challenges, understanding where in the code the error is occurring 
can be more difficult with monoliths.

•	 Upgrading one part of the system requires deploying the  
entire monolith.

•	 Fixing one component or module can impact others in unexpected 
ways, which requires expensive, additional testing of the entire 
application to unravel.

Moreover, a monolithic system must scale as a single unit regardless of which 
service or function needs more resources. As a result, resources end up being 
allocated unnecessarily for the whole application when the needs for those 
resources may arise infrequently. This poor resource utilization undermines 
any potential cost savings from deploying monolithic applications to the 
cloud.

In contrast, microservices offer the following advantages:

•	 The code for a microservice is considerably smaller and can be tested 
and deployed independently of other services.

•	 Each microservice can also be scaled independently, allowing for 
targeted scaling.

•	 Code changes for a microservice are isolated to the service in 
question, making changes much less risky and costly.

•	 Problems are isolated to a specific microservice and don’t cascade 
through the entire application. At worst, there is a partial loss of 
functionality rather than total application failure while the errant 
microservice is rolled back.

•	 Language, development framework, and database choices for a 
microservice are flexible and depend on the team assigned to that 
service, allowing them to choose the best technology and tools for 
their task.



Some Complementary Trends
To fully understand the microservices environment, we also need to 
understand related trends that complement microservice-based 
architectures. Let’s look at three of those trends — DevOps, CI/CD,  
and containers.

DevOps is the marriage of two previously decoupled activities: Dev for 
developing and testing the software and Ops for operations, or deploying the 
software. DevOps is a model for software development and deployment that 
empowers small groups of developers, testers, and operations personnel to 
work as a single unit, moving the code from creation to testing to deployment 
and support. In short, with DevOps, the same team is responsible for the 
microservice during its entire lifecycle.

This is complemented by our second trend — Continuous Integration/
Continuous Delivery (CI/CD). Automated tools such as Jenkins enable a CI/
CD strategy to frequently merge, build, and deploy code. This decreases time 
to market by creating shorter, incremental cycles of commit, build, test, and 
deploy. With CI/CD, it’s now common to see deployment frequencies of many 
times per day.

eBook // Maintaining Software Quality with Microservices 4

https://en.wikipedia.org/wiki/DevOps
https://opensource.com/article/18/8/what-cicd
https://opensource.com/article/18/8/what-cicd
https://www.jenkins.io/
https://media.webteam.puppet.com/uploads/2020/01/2019-state-of-devops-industry-report-card.pdf
https://media.webteam.puppet.com/uploads/2020/01/2019-state-of-devops-industry-report-card.pdf


eBook // Maintaining Software Quality with Microservices 5

The third trend is containers. With the move to cloud computing, two 
deployment techniques have become popular: virtual machines (VMs) and 
containers. Both isolate an enterprise’s applications from others on the 
shared cloud platform, but they differ in significant ways.

VMs create individual silos that contain an entire software stack — including 
the OS — into which a customer can place anything, including monolithic 
applications. As demand on the application fluctuates, the number of VMs 
can spin up or down. However, adding one of these heavy-weight VMs takes 
time, so most teams buy more VMs than they need in anticipation of demand 
spikes. As a result, much of the purchased computing capacity remains 
unused, which is exactly what a cloud-based solution is designed to prevent. 

Containers such as Docker, on the other hand, maintain all the benefits 
of VMs, while greatly improving resource utilization under varying loads. 
Containers hold only the microservice code and any libraries needed to run it. 
Instead of including the OS, containers rely on the underlying platform, giving 
containers a footprint of just a few megabytes compared to the hundreds of 
megabytes required for VMs. With the small footprint and limited code, it’s 
easy to scale individual microservices by quickly spinning up more container 
images. For these reasons, containers have become the deployment unit of 
choice for microservices. As one gauge of its popularity, Google claims to run 
everything on containers and spins up billions(!) of containers each week.

Working together, microservices supported by these three trends — DevOps, 
containers, and CI/CD automation — have greatly increased the agility and 
velocity of application lifecycles. A developer can now code, test, and deploy 
a containerized microservice to the cloud in hours, if not minutes.

https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Virtual_machine
https://www.docker.com/
https://cloud.google.com/containers
https://cloud.google.com/containers


Of course, despite all their advantages and popularity, microservices aren’t 
a silver bullet for every situation. A premature or uninformed move to 
microservices can cause pitfalls and serious quality issues. The challenges 
with moving to (and maintaining quality with) microservices-based 
applications are those inherent to any distributed computing solution: 
performance, failures (especially partial failures which can be tricky to 
handle), data consistency, architectural choices, and more. 

Let’s look in detail at some of these challenges with microservices, how they 
can affect the quality of your systems, and ways to address each challenge.

Granularity
When you make the move from a monolith to microservices, one of your first 
decisions is how granular your new services should be. Deciding on the right 
level of granularity is an art, not a science. Breaking your systems into too 
many microservices leads to an overwhelming number of chatty interactions, 
resulting in latency and a slow system. On the other hand, divisions that are 
too coarse lead to a tight coupling between your services, which brings you 
right back to the problems of monoliths and the reasons you decided to 
switch in the first place. This art of finding the right size for your microservices 
is complex and debated, but in general, it’s recommended that a microservice 
should be small enough that a team can build and deploy a user story in 
one day, yet large enough that it contains an entire business concept and its 
associated services.

Network Communication
Unlike in-memory direct calls between parts of a monolithic application, 
network communications are essential for maintaining the loose coupling 
between microservices. To avoid quality issues caused by the unexpected 
effects of networking, developers need to be aware of the fallacies of 
distributed computing, such as misconceptions that the network is reliable, 
latency is zero, and bandwidth is infinite. One approach to reduce latency is 

Challenges with Microservices2

to use the container deployments previously mentioned. Some tools, such as 
Kubernetes, can minimize communication overhead by placing microservices 
in the same container (a pod, in Kubernetes parlance).

Interaction Exchange Patterns
Creating a decoupled microservices architecture requires a thorough 
understanding of how those microservices exchange messages. Typically, 
services interact either through a request-response or publish-subscribe 
pattern. Choosing the correct pattern is important, as the wrong pattern can 
cause issues throughout your system that can be difficult to track down.

With request-response (which closely mimics function calls in monolithic 
software), the requesting service sends a specific message to a known 
recipient, then idles while it waits for an answer. Request-response 
interactions imply a runtime coupling between services. While a popular 
architectural choice —and relatively easy to implement —request-response 
can lead to chatty interactions which increase latency and can cause  
services to hang while they wait for a response. An issue like this can  
be difficult to debug.

For more complex systems, a better solution might be event-driven 
architectures that use the publish-subscribe pattern (or “pub/sub”), where 
a service “subscribes” to system events by registering itself with a message 
broker. When events happen on other services, those services “publish” the 
event information to the broker, who in turn notifies all interested subscribers. 
This pattern achieves maximum decoupling through use of the broker.

eBook // Maintaining Software Quality with Microservices 6

https://medium.com/@kylegenebrown/whats-the-right-size-for-a-microservice-bf1740370d47
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://dev.to/heroku/best-practices-for-event-driven-microservice-architecture-2lh7
https://dev.to/heroku/best-practices-for-event-driven-microservice-architecture-2lh7


eBook // Maintaining Software Quality with Microservices 7

System Latency
As we’ve seen above, system latency is a major concern with microservice 
architectures. In addition to the causes mentioned above, there are 
other factors that can increase system latency, such as the number of 
microservices involved in a request, the load on each of these services, the 
network bandwidth between these services, and the network placement of  
these services. 

By closing monitoring system latency with APM tools such as AppOptics 
or New Relic, DevOps teams can evaluate which microservices need to be 
deployed together locally, the appropriate choice of network protocols, and 
tweak the APIs.

Partial Failures
In a distributed microservices architecture, there is always the risk of  
a difficult-to-identify partial failure that brings down the entire system.  
For example, a microservice might become isolated by a network failure,  
or an excessive load could cause a response time-out. To guard against  
these failures, it’s essential that microservices (and the applications that  
rely on them) are designed to cleanly handle and recover from partial failures.  
Some techniques include providing fallbacks, such as cached responses,  
and limiting the number of outstanding requests allowed to queue. At the 
least, the application should be designed to continue operating with  
a missing piece rather than collapse completely.

Publisher

Subscriber

Subscriber

Subscriber

Pub/Sub pattern courtesy of Enterprise Integration Patterns

https://www.appoptics.com/
https://newrelic.com/
https://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html


eBook // Maintaining Software Quality with Microservices 8

Additionally, with cloud-based containerized microservices, it only takes 
seconds to automatically remove and replace failing containers or to spin up 
new container instances to meet demand spikes. So by simply monitoring 
the service and its demand, you can help prevent most failures. Similarly, 
geographical diversity of the deployments, which is common in most popular 
cloud platforms, can mitigate national or regional outages. 

Consistency
The possibility of partial failures also makes it especially difficult to maintain 
data consistency. Monolithic applications use a single data store to ensure 
data consistency during and after updates. Microservices, on the other 
hand, typically each use their own databases, allowing each team to use its 
preferred database stack. Because of this, data consistency is much more 
difficult to implement in distributed systems. 

Monolithic software uses Atomicity, Consistency, Isolation, and Durability 
(ACID) transactions to ensure that data remains consistent during and 
after updates. For microservices, however, distributed transactions are very 
difficult. One popular approach for data consistency is to strive for eventual 
consistency. You can also mitigate risks by compensating operations that 
reverse mistaken actions, such as in the Saga pattern. This mimics the way 
businesses handle inconsistencies, all while maintaining  
operational continuity. 

Organizational Changes
Another major challenge when moving to microservices is your organizational 
structure and culture. Some organizations are not prepared for the cultural 
changes that need to occur.

For example, does your organization have experience with, and embrace, 
independent teams? Deploying a monolith is usually a coordinated effort 
spanning many large teams and departments, each responsible for well-
defined silos such as UI, middleware, database, and testing. But the small, 
autonomous teams necessary for DevOps-based development are the exact 
opposite. Microservice teams own their service from inception to retirement 
— they build it, deploy it, and support it. This change in approach can  
be difficult.

Also, what is your overall organizational culture? Is your culture open 
to the changes required to adopt a microservice approach? How does 
your organization fit into the three organizational cultures — pathological, 
bureaucratic, and generative — as defined by sociologist Ron Westrum and 
popularized by Jez Humble? To determine your work culture: ask the question, 
“How are messengers handled by your organization?” If the “messenger is 
shot,” then you have a pathological culture. If the “messenger is ignored,” then 
you have a bureaucratic culture. Finally, if the “messenger is trained,” then you 
have a generative culture. If your company is generative or moving towards  
a generative culture, then a microservices architecture might be a good  
fit for you.

Testing and Debugging Microservices
Finally, let’s look at how the shift to microservices, DevOps, and CI/CD 
introduces serious challenges to your quality assurance processes. When 
a team deploys production software thousands of times a day (as some 
companies do) using potentially thousands of independent microservices,  
the old methods of testing and debugging will no longer work. 

On one hand, microservice-based code that’s built, tested, and deployed in 
smaller chunks and in more iterations means less code and more opportunity 
for tests, making it easier to troubleshoot and redeploy code. On the 
other hand, the choreography between microservices within the complete 
application creates much more complexity than before, and an inability to 
track down the root cause of defects.

Let’s look at some of the traditional steps for testing and how they are 
affected in the new world of microservices.

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Eventual_consistency
https://microservices.io/patterns/data/saga.html
https://qualitysafety.bmj.com/content/13/suppl_2/ii22
https://continuousdelivery.com/implementing/culture/
https://dzone.com/articles/release-frequency-a-need-for-speed
https://dzone.com/articles/release-frequency-a-need-for-speed


eBook // Maintaining Software Quality with Microservices 9

Integration Testing
With microservices, testing at each stage of the delivery pipeline is still 
necessary. However, the focus of what needs testing is a little different. 

The code for a typical monolithic application usually follows an organization-
dependent structure — UI, middleware, backend, database. This is an example 
of Conway’s Law, which says that software design typically resembles an 
organization’s structure. As a result, most organizations have siloed tools and 
testing practices for each stage of the SDLC.

In contrast, microservice teams form around individual business capabilities 
and are composed of specialists — from developers to operations support 
— for the full application lifecycle. These teams independently choose the 
languages, frameworks, and tools they will use. The way one team approaches 
testing can be very different from the way another team does. 

And since microservice testing must include the interactions with other 
microservices — both the network connections and the contracts between 
the services — testing must be coordinated among multiple teams. Testing 
the integration among thousands of microservices across disparate teams 
with disparate technologies requires new approaches. Some solutions include 
automated integration testing that can grow as the number of interconnected 
microservices grows, and hiring cross-functional quality assurance engineers 
that fully understand the different microservices and their interactions. 

Debugging
Having multiple microservices composing an application also means that 
there are multiple points of failure. Therefore, when an error occurs, it 
can be difficult to pinpoint the precise step where that failure occurred. 
Failure investigation in a microservice environment requires monitoring 
multiple services and sifting through multiple log files and multiple network 
connections. Three strategies that can help are application monitoring, error 
monitoring, and better logging practices. Let’s look at each one.

Application Performance Monitoring
Application performance monitoring (APM) tools are a way to periodically 
sample your systems for metrics on performance, resource consumption, 
availability, and error rate. APM is useful for:

•	 Measuring the overall status of applications and infrastructure

•	 Tracking changes in performance or stability over time

•	 Identifying bottlenecks

APM is also commonly used in transaction tracing, which measures the flow 
of requests throughout each component of the application. This shows you 
exactly how long each component takes to process the request, helping both 
development and operations find and address performance issues.

Error Baselines

https://www.melconway.com/Home/Conways_Law.html
https://twitter.com/Werner/status/741673514567143424
https://dzone.com/articles/top-10-automated-software-testing-tools
https://www.techopedia.com/definition/29133/application-monitoring


eBook // Maintaining Software Quality with Microservices 10

APM can help you understand when and why your services are failing. 
However, recalling our earlier discussion of partial failures in a microservices 
environment, it’s clear that monitoring everything to ensure 100% visibility 
is not feasible, nor desired. Being flooded with hundreds of events without a 
clear idea of what to measure is unproductive. The art of APM lies in finding 
the business impact of each possible failure, which leads to defining the 
appropriate metrics, and then determining which aspects to monitor. The 
general approach is to fix and redeploy those services that have the greatest 
business impact as quickly as possible.

Logging
Logging individual events from microservices can give you critical information 
on what has happened within your services, though this raw data does not 
provide easily actionable insights. A reasonable approach with microservices 
is to log individual events within a service, and then use an aggregation tool to 
see the bigger picture. In this way, microservice events can be logged locally 
and moved into a central aggregator for viewing, root cause analysis,  
and forensics. 

Continuous Code Improvement
Error monitoring focuses on detecting and reporting problems in real time. 
As opposed to APM, which performs periodic sampling and tracing, error 
monitoring receives errors as they occur along with important diagnostic  
and contextual data. By implementing an error monitoring tool such as Rollbar, 
you can not only be alerted when failures in your systems occur, but also see 
contextual information, including the code behind the failure, user information 
such as browser and activities, affected environments, aggregated log and 
error information, and root cause of the error. 

Error monitoring tools can also be used to set baselines for errors as you 
make the move to microservices. As dependencies get more complex, error 
monitoring can give you a holistic view of errors across all applications with 
historic trends on errors and occurrences. With a clear baseline, any new 
errors are easier to identify and fix.

https://rollbar.com/


Now that we’ve seen the many challenges associated with moving to 
microservices, and talked about some of the ways you can address those 
challenges, let’s look at some overall strategies to help you maintain quality 
while moving to microservices. 

Organizational Aspects
Once you commit to using microservices, DevOps, and CI/CD pipelines,  
the question becomes how to effect this change. It’s not feasible to expect 
an organization built around monolithic applications to adopt microservices 
architectures in one giant move. The transition should be gradual and  
include incremental changes.

Here are several best practices to help prepare your organization for such  
a transition.

Establish Goals
Your first microservice-based projects should have clear, measurable goals. 
Having a clearly defined plan, support system, and dedicated resources 
to ensure each team is successful will help make the transition as smooth 
as possible. These must be internalized and agreed to by everyone, from 
management down. The primacy effect of exposure to new experiences 
— which says the first information presented is more easily remembered — 
should be considered. A positive initial exposure and acceptance will have 
long-term benefits.

Create Cross-Functional Teams
The first microservices projects are also a good time to create appropriate 
cross-functional DevOps-centric teams that can take responsibility for the 
full lifecycle of their microservice. Such teams would ideally include business 
owners (who can identify requirements), developers, QA and testing experts, 
and operations. 

Meeting the Quality Challenge3

To align with the microservice delivery model, where a microservice team 
takes responsibility for the entire lifecycle from concept to production, 
each team should be able to operate autonomously, without the need for 
additional interfaces or permissions. 

These initial projects are also a good opportunity for the DevOps team to 
establish new workflows, work out the automation, and experiment with 
different ways to build and deploy microservices. If your organizational culture 
is a generative culture, then this experimentation and failure will be welcomed  
as a learning opportunity.

Get the Size Right
With your first microservice projects, you should also start small, choosing 
one or two small, but useful, projects that can be carried out as an adjunct to 
any ongoing monolith development. Avoid organization-wide changes without 
proving the success of a few small microservice projects.

Define Metrics
Businesses have long adopted Key Performance Indicators (KPIs), such as 
revenue, time to market, conversions, and so on, to measure the success 
of their plans and activities. Peter Drucker, inventor of modern business 
management and credited with the concept, once said “If you can’t measure 
it, you can’t improve it.” Without such measurements, it is difficult to quantify 
— and eventually justify — the advantages of moving to microservices in  
future projects.

Microservice-based solutions should adopt a similar mindset and monitor 
KPIs such as software quality, time to market, developer productivity, and 
others. These can be computed by gathering smaller and more measurable 
quantities such as the time to deployment of a microservice or the frequency 
of updates to a microservice. 

eBook // Maintaining Software Quality with Microservices 11

https://thedecisionlab.com/biases/primacy-effect/
https://en.wikipedia.org/wiki/Peter_Drucker


Handle Legacy
It’s best to choose initial projects that don’t depend on the monolith’s code 
or release cycle. The ideal choice will be functionality that doesn’t directly 
impact customer-facing features, but still provides enough exposure to 
realistic situations to prove a successful transition to a microservice. A good 
trial microservice might be adding a new feature that isn’t currently in the 
monolith, can be deployed separately, but can still be used by the monolith. 
Some suggestions include:

•	 Start with edge functionality that allows you to move a common, but 
ancillary, service, such as authentication or communications (emails, 
texts, etc.). This will give your team practice in moving to the new 
architecture, but will limit the changes to a single point of failure.

•	 Start with functionality that uses only isolated data. Because moving  
to microservices can lead to complicated scenarios involving distributed 
database transactions (as mentioned above), it is often easiest to start 
with functionality that uses data in isolation in order to remove  
initial complexity.

•	 Start with relatively unimportant pieces of functionality that can fail with 
minimal impact, but that will allow your team to establish the baseline of 
your architecture (APIs, containers, etc.). That way, you can observe any 
issues with your new architecture (such as latencies, since microservices 
may introduce latencies that didn’t exist in monoliths), and generally 
become comfortable with the idea  
of microservices.

Technical Aspects
Now let’s look at a few technical best practices that can help  
with maintaining quality.

Use an Anti-Corruption Layer
As the name suggests, the anti-corruption layer is a design pattern 
implemented as an API between two different systems. This layer translates 
between their semantics and syntax so that neither is affected by their 
differences. Using an anti-corruption layer between your microservice and 
your monolith allows your microservice to safely call your legacy application 
while remaining isolated.

Refactor the Monolith
Refactoring your monolith to help untangle dependencies and optimize 
for microservices-style development can provide major benefits as you 
begin your transition. Of course, any legacy refactoring requires a good 
understanding of the replacement monolith. A legacy monolith may have 
accumulated more and more features while also remaining unexamined 
for years, and by this time it likely contains hundreds of modules, linked 
together in ways that aren’t understood. This blog post provides more 
detailed technical best practices for refactoring your legacy software, 
such as streamlining your monolith’s build and untangling dependencies, 
CI/CD techniques, optimizing for local development, supporting parallel 
development, adopting infrastructure as code, and several others. 

Avoiding Undifferentiated Heavy Lifting
DevOps teams take on a lot of tasks that can often be done more easily  
(and perhaps better) by others who specialize in those tasks. Some examples 
include buying hardware, setting up and maintaining servers, managing 
network interconnections, and so on. These are examples of what Amazon’s 
CTO, Werner Vogels, calls “undifferentiated heavy lifting.” This describes work 
that could easily be outsourced to others (e.g., a cloud platform), allowing 
the DevOps teams to concentrate on providing business value. This sort of 
undifferentiated work also includes building something from scratch when 
commercial or open source software that fulfills the same purpose is  
readily available. 

eBook // Maintaining Software Quality with Microservices 12

https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
https://rollbar.com/blog/best-practices-for-moving-from-a-monolith-to-microservices/


eBook // Maintaining Software Quality with Microservices 13

This ID is propagated between every service and included in all log messages, 
enabling you to quickly search across calls and quickly debug the root cause 
of failures.

Rollbar also allows you to tie this correlation ID into your error and stack 
traces, and capture additional contextual information about the execution 
environment, such as the client device, payload, local variables, and more. 
Together, these can give you greater insight into your microservices,  
allowing you to pinpoint where errors occur, how many times, and why.

Conclusion
There are many benefits of moving to a microservices-based architecture.  
At its simplest, microservices enable agile development, faster time to 
market, and a faster pace of new feature releases. By using best practices 
in your organizational and technical strategies, you can successfully migrate 
your monoliths to microservices and still maintain a high level of quality  
in your systems. 

Observability
One of the challenges for DevOps teams is to understand and analyze the 
relationships between infrastructure, microservices, their source code, and 
software delivery processes. Truly understanding these relationships, and  
how these systems behave, is a key to getting to the root of complex errors 
and performance issues. This understanding into your systems is  
called observability. 

In software practice, observability means understanding an application’s 
behavior by looking at its outputs. Specifically, an observable system allows 
you to see, and determine the cause of, failures. Observability works by 
instrumenting the application with events, monitors, logs, and other data 
that can be analyzed to troubleshoot problems. Put another way, you don’t 
query the system to find out its status, the data, and the status of the 
system; instead, it is given to you. Observability is especially important in 
microservice-based systems, where thousands of discrete services and 
moving parts make observability incredibly difficult.

Building in observability during development, testing, and staging also 
addresses issues that arise before production. It helps to identify 
performance issues, process inefficiencies, and user experience problems 
earlier in the development lifecycle. By using observability, teams can find 
issues earlier, build more efficient applications, improve performance, and 
optimize infrastructure decisions. This leads to a better experience for the 
end user and greater value for the business, which spends less time and 
money to deliver quality software. 

Error Monitoring for Observability
One way to achieve this observability in a microservices architecture is 
through the previously mentioned error monitoring. As many microservices 
interact with one another to perform specific tasks, a single higher-order 
request can generate calls to multiple microservices. To understand the entire 
call chain, an error monitoring tool like Rollbar can assign a unique identifier — 
a correlation ID — to every message in the system.  

https://try.rollbar.com/ebook/achieving-observability/
https://try.rollbar.com/ebook/achieving-observability/
https://try.rollbar.com/ebook/achieving-observability/
https://blog.rapid7.com/2016/12/23/the-value-of-correlation-ids/


eBook // Maintaining Software Quality with Microservices 14

About Rollbar
Rollbar is the leading continuous code improvement platform that proactively discovers, predicts,  

and remediates errors with real-time AI-assisted workflows. With Rollbar, developers continually improve 
their code and constantly innovate rather than spending time monitoring, investigating, and debugging.  
More than 5,000 businesses, including Twilio, Salesforce, Twitch, and Affirm, use Rollbar to deploy better 
software, faster while quickly recovering from critical errors as they happen. Learn more at rollbar.com

© 2012-21 ROLLBAR, INC.

https://rollbar.com/
https://twitter.com/rollbar
https://github.com/rollbar
https://www.linkedin.com/company/rollbar/

	Introduction

